Effects of Poly(ADP-Ribose) Polymerase-1 Inhibition in a Neonatal Rodent Model of Hypoxic-Ischemic Injury

نویسندگان

  • Melanie Klöfers
  • Jules Kohaut
  • Ivo Bendix
  • Josephine Herz
  • Vinzenz Boos
  • Ursula Felderhoff-Müser
  • Mark Dzietko
چکیده

BACKGROUND Hypoxia ischemia (HI) to the developing brain occurs in 1-6 in 1000 live births. Large numbers of survivors have neurological long-term sequelae. However, mechanisms of recovery after HI are not understood and preventive measures or clinical treatments are not effective. Poly(ADP-ribose) polymerase-1 is overactivated in response to ischemia. In neonatal mice HI activates PARP-1 but its role in perinatal brain injury remains uncertain. OBJECTIVE Aim of this study was to explore the effect of TES448 (PARP-1-inhibitor) and hypothermia after an ischemic insult. DESIGN AND METHODS 10-day-old Wistar rats underwent HI. TES448 was given 10 min, 3 hrs, and 6 hrs after hypoxia. Hypothermia was started 30 min after HI and brains were dissected at P12. Western blotting and histological staining were used to evaluate for degree of injury. RESULTS Protein expression of PARP-1 levels was diminished after TES448 treatment. Cresyl violet and TUNEL staining revealed decreased injury in male rat pups following TES448 and combined treatment. Female rats showed increased numbers of TUNEL-positive cells after combined therapy. TES448 inhibited microglia activation after hypoxic-ischemic injury. A cellular response including NeuN, Olig2, and MBP was not affected by PARP-1-inhibition. CONCLUSIONS Inhibition of PARP-1 and hypothermia lead to an alteration of injury but this effect is sexually dimorphic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain.

Poly(ADP-ribose) synthase (PARS), an abundant nuclear protein, has been described as an important candidate for mediation of neurotoxicity by nitric oxide. However, in cerebral ischemia, excessive PARS activation may lead to energy depletion and exacerbation of neuronal damage. We examined the effect of inhibiting PARS on the (a) degree of cerebral injury, (b) process of inflammatory responses,...

متن کامل

PARP-1 inhibits glycolysis in ischemic kidneys.

After ischemic renal injury (IRI), selective damage occurs in the S(3) segments of the proximal tubules as a result of inhibition of glycolysis, but the mechanism of this inhibition is unknown. We previously reported that inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) activity protects against ischemia-induced necrosis in proximal tubules by preserving ATP levels. Here, we tested whether ...

متن کامل

Effects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia

Background: A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. M...

متن کامل

Intranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury.

Cumulative evidence has indicated a critical role of poly(ADP-ribose) polymerase-1 activation in ischemic brain damage. Poly(ADP-ribose) glycohydrolase (PARG) is a key enzyme in poly(ADP-ribose) catabolism. Our previous studies showed that PARG inhibitors, gallotannin (GT) and nobotanin B, can profoundly decrease oxidative cell death in vitro. Here, we tested the hypothesis that intranasal deli...

متن کامل

Cardioprotective effects of poly(ADP-ribose) polymerase inhibition.

Free radical and oxidant production in cardiac myocytes during ischemia/reperfusion, cardiomyopathy, cardiotoxic drug exposure and ageing leads to DNA strand-breakage which activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) and initiates an energy consuming, inefficient cellular metabolic cycle with transfer of the ADP-ribosyl moiety of NAD+ to protein acceptors. These processes le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017